Welcome to OMADS!
This is the documentation page of the OMADS python package.
About OMADS
OMADS is a python implementation of the mesh adaptive direct search (MADS) algorithm that supports orthogonal \(2n\) directions where \(n\) is the number of variables. MADS is a direct search method that has global convergence properties [1]. The latest version of OMADS provides three modules; POLL.py
, SEARCH.py
and MADS.py
. Each module can work per se to solve an optimization problem given an appropriate problem setup. OMADS
is published on PyPi and maintained on my GitHub page [2].
License & copyright
© Ahmed H. Bayoumy
Citation
If you use this code, please cite it as below.
@software{OMADS_AB,
author = {Bayoumy, A.},
title = {OMADS},
year = 2022,
publisher = {Github},
version = {2.1.0},
url = {https://github.com/Ahmed-Bayoumy/OMADS}
}
References
- 1
C. Audet and J. Dennis. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on optimization, 17(1):188–217, 2006.
- 2
A. Bayoumy. OMADS: Orthogonal Mesh Adaptive Direct Search. 2022. URL: https://github.com/Ahmed-Bayoumy/OMADS, doi:10.5281/zenodo.7212701.
- 3
C. Audet, S. Digabel, V. Rochon Montplaisir, and C. Tribes. Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm. ACM Transactions on Mathematical Software, 48(3):35:1–35:22, 2022. URL: https://dx.doi.org/10.1145/3544489, doi:10.1145/3544489.
- 4
A. Bayoumy. StatLML: Statistical Machine Learning Library. 2022. URL: https://github.com/Ahmed-Bayoumy/SLML.
- 5
C. Audet and W. Hare. Derivative-free and Blackbox Optimization. Volume 2. Springer, 2017.
- 6
A. Bayoumy. RAF: Relative Adequacy Framework. 2022. URL: https://github.com/Ahmed-Bayoumy/RAF.
Technical Documentation
Demo Documentation