Tutorials ######### This section demonstrates how to use DMDO to solve MDO problems. Sellar problem ============== .. _Ft1: .. figure:: Figures/Sellar_Wflow.png :width: 450 :align: center .. _Ft2: .. figure:: Figures/sellar_xdsm.png :width: 700 :align: center Original problem :math:`\mathcal{P}`: .. math:: \begin{align*} \text{min}: & \ \ \ x^2 + z_2 + y_1 + e^{-y_2} \\ \text{w.r.t.}: & \ \ \ x, z_1, z_2 \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ 3.16 - y_1 <=0 \\ & \ \ \ y_2 - 24.0 <=0 \\ & \ \ \ y_1 (x, z_{1}, z_{2}, y_{2}) = x+z^{2}_{1}+z_{2}-0.2y_{2} \\ & \ \ \ y_2 (z_{1}, z_{2}, y_{1}) = \sqrt{y_{1}}+z_{1}+z_{2} \tag{$\mathcal{P}$} \end{align*} Subproblem :math:`\mathcal{p}_{1}`: .. math:: \begin{align*} \text{min}: & \ \ \ x^2 + z_2 + y_1 + e^{-y_2} + \phi_{z_{1}} (z_{1_{1}}-z_{1_{2}}) + \phi_{z_{2}} (z_{2_{1}}-z_{2_{2}}) + \phi_{y_{1}} (y_{1_{1}}-y_{1_{2}}) + \phi_{y_{2}} (y_{2_{1}}-y_{2_{2}})\\ \text{w.r.t.}: & \ \ \ x, z_{1_{1}}, z_{2_{1}}, y_{2_{1}} \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ 3.16 - y_{1_{1}} <=0 \\ & \ \ \ y_{1_{1}} (x, z_{1_{1}}, z_{2_{1}}, y_{2_{1}}) = x+z^{2}_{1_{1}}+z_{2_{1}}-0.2y_{2_{1}} \tag{$\mathcal{p}_{1}$} \end{align*} Subproblem :math:`\mathcal{p}_{2}`: .. math:: \begin{align*} \text{min}: & \ \ \ \phi_{z_{1}} (z_{1_{1}}-z_{1_{2}}) + \phi_{z_{2}} (z_{2_{1}}-z_{2_{2}}) + \phi_{y_{1}} (y_{1_{1}}-y_{1_{2}}) + \phi_{y_{2}} (y_{2_{1}}-y_{2_{2}}) \\ \text{w.r.t.}: & \ \ \ x, z_{1_{2}}, z_{2_{2}}, y_{1_{2}} \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ y_{2_{2}} - 24.0 <=0 \\ & \ \ \ y_{2_{2}} (z_{1_{2}}, z_{2_{2}}, y_{1_{2}}) = \sqrt{y_{1_{2}}}+z_{1_{2}}+z_{2_{2}} \tag{$\mathcal{p}_{2}$} \end{align*} .. code-block:: python # Sellar - Two discipline problem with IDF # Variables grouping and problem setup x = {} X: List[variableData] = [] # Define variable names N = ["x", "z1", "z2", "y1", "y2", "z1", "z2", "y1", "y2"] nx: int = len(N) # Subproblem indices: Indices should be non-zero J = [1,1,1,1,1,2,2,2,2] # Subproblems links L = [None, 2, 2, 2, 2, 1, 1, 1, 1] # Coupling types Ct = [COUPLING_TYPE.UNCOUPLED, COUPLING_TYPE.SHARED, COUPLING_TYPE.SHARED, COUPLING_TYPE.FEEDFORWARD, COUPLING_TYPE.FEEDBACK, COUPLING_TYPE.SHARED, COUPLING_TYPE.SHARED, COUPLING_TYPE.FEEDBACK, COUPLING_TYPE.FEEDFORWARD] # Realistic lower bounds lb = [0, -10, 0, 3.16, 1.77763888346, -10, 0, 3.16, 1.77763888346] # Realistic upper bounds ub = [10.,10.,10., 115.2, 24., 10.,10., 115.2, 24.] # # Artificial lower bounds # lb = [0, -10, 0, 2., 1.5, -10, 0, 2., 1.5] # # Artificial upper bounds # ub = [10.,10.,10., 50., 50, 10.,10., 50., 50] # Bad artificial lower bounds # lb = [0, -10, 0, 0., 0., -10, 0, 0., 0.] # Bad artificial upper bounds # ub = [10.]*9 # Baseline x0 = [0., 5., 5., 8.43, 7.848, 5., 5., 8.43, 7.848] # Scaling scaling = np.subtract(ub,lb) Qscaling = [] # Create a dictionary for each variable for i in range(nx): x[f"var{i+1}"] = {"index": i+1, "sp_index": J[i], f"name": N[i], "dim": 1, "value": 0., "coupling_type": Ct[i], "link": L[i], "baseline": x0[i], "scaling": scaling[i], "lb": lb[i], "value": x0[i], "ub": ub[i]} Qscaling.append(10./scaling[i] if 10./scaling[i] != np.inf and 10./scaling[i] != np.nan else 1.) # Instantiate the variableData class for each variable using its according dictionary for i in range(nx): X.append(variableData(**x[f"var{i+1}"])) def Sellar_A1(x): return x[0] + x[1]**2 + x[2] - 0.2*x[3] def Sellar_A2(x): return x[0] + x[1] + np.sqrt(x[2]) def Sellar_opt1(x, y): return [x[0]**2 + x[2] + y[0] + np.exp(-x[3]), [3.16-y[0]]] def Sellar_opt2(x, y): return [0., [y[0]-24.]] # Analyses setup; construct disciplinary analyses DA1: process = DA(inputs=[X[0], X[1], X[2], X[4]], outputs=[X[3]], blackbox=Sellar_A1, links=2, coupling_type=COUPLING_TYPE.FEEDFORWARD ) DA2: process = DA(inputs=[X[5], X[6], X[7]], outputs=[X[8]], blackbox=Sellar_A2, links=1, coupling_type=COUPLING_TYPE.FEEDFORWARD ) sp1_MDA: process = MDA(nAnalyses=1, analyses = [DA1], variables=[X[0], X[1], X[2], X[4]], responses=[X[3]]) sp2_MDA: process = MDA(nAnalyses=1, analyses = [DA2], variables=[X[5], X[6], X[7]], responses=[X[8]]) # Construct the coordinator coord = ADMM(beta = 1.3, nsp=2, budget = 500, index_of_master_SP=1, display = True, scaling = Qscaling, mode = "serial", M_update_scheme= w_scheme.MAX, store_q_io=True ) # Construct subproblems sp1 = SubProblem(nv = 4, index = 1, vars = [X[0], X[1], X[2], X[4]], resps = [X[3]], is_main=1, analysis= sp1_MDA, coordination=coord, opt=Sellar_opt1, fmin_nop=np.inf, budget=10, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST, freal=3.16) sp2 = SubProblem(nv = 3, index = 2, vars = [X[5], X[6], X[7]], resps = [X[8]], is_main=0, analysis= sp2_MDA, coordination=coord, opt=Sellar_opt2, fmin_nop=np.inf, budget=10, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST ) MDAO: MDO = MDO( Architecture = MDO_ARCHITECTURE.IDF, Coordinator = coord, subProblems = [sp1, sp2], variables = X, responses = [X[3], X[8]], fmin = np.inf, hmin = np.inf, display = False, inc_stop = 1E-9, stop = "Iteration budget exhausted", tab_inc = [], noprogress_stop = 1000 ) # Run the MDO problem out = MDAO.run() # Print summary output print(f'------Run_Summary------') print(MDAO.stop) print(f'q = {MDAO.Coordinator.q}') for i in MDAO.Coordinator.master_vars: print(f'{i.name}_{i.sp_index} = {i.value}') fmin = 0 hmax = -np.inf for j in range(len(MDAO.subProblems)): print(f'SP_{MDAO.subProblems[j].index}: fmin= {MDAO.subProblems[j].MDA_process.getOutputs()}, hmin= {MDAO.subProblems[j].opt([s.value for s in MDAO.subProblems[j].get_design_vars()] , MDAO.subProblems[j].MDA_process.getOutputs())[1]}') fmin += sum(MDAO.subProblems[j].MDA_process.getOutputs()) hmin= MDAO.subProblems[j].opt([s.value for s in MDAO.subProblems[j].get_design_vars()] , MDAO.subProblems[j].MDA_process.getOutputs())[1] if max(hmin) > hmax: hmax = max(hmin) print(f'P_main: fmin= {fmin}, hmax= {hmax}') print(f'Final obj value of the main problem: \n {fmin}') .. code-block:: ------Run_Summary------ Iteration budget exhausted q = [ 2.34375000e-02 1.17187500e-02 -1.99577179e-09 -2.96638243e-02] x_1 = 0.0 z1_1 = 1.375 z2_1 = 2.34375 y1_1 = 3.159999977639373 y2_1 = 5.371875111803135 z1_2 = 1.328125 z2_2 = 2.33203125 y1_2 = 3.16 y2_2 = 5.437795133463117 SP_1: fmin= [3.159999977639373], hmin= [2.2360627127682164e-08] SP_2: fmin= [5.437795133463117], hmin= [-18.56220486653688] P_main: fmin= 8.59779511110249, hmax= 2.2360627127682164e-08 Final obj value of the main problem: 8.59779511110249 Speed reducer ============= Original problem :math:`\mathcal{P}`: .. _Ft3: .. figure:: Figures/SR.png :width: 400 :align: center .. math:: \begin{align*} \text{min}: & \ \ \ 0.7854x_{1}x^{2}_{2}(3.3333x^{2}_{3} + 14.9334x_{3} -43.0934) -1.5079x_{1}(x^{2}_{6} + x^{2}_{7}) +7.477(x^{3}_{6}+x^{3}_{7}) + 0.7854(x_{4}x^{2}_{6}+x_{5}x^{2}_{7}) \\ \text{w.r.t.}: & \ \ \ x_{1}, x_{2}, x_{3}, x_4, x_5, x_6, x_7 \\ \text{s.t. }: \ \ \ \\ & \ \ \ 27x^{-1}_{1}x^{-2}_{2}x^{-1}_{3} \leq 1 \\ & \ \ \ 397.5x^{-1}_{1}x^{-2}_{2}x^{-2}_{3} \leq 1 \\ & \ \ \ 1.93x^{-1}_{2}x^{-1}_{3}x^{3}_{4}x^{-4}_{6} \leq 1 \\ & \ \ \ 1.93x^{-1}_{2}x^{-1}_{3}x^{3}_{5}x^{-4}_{7} \leq 1 \\ & \ \ \ [(745x_{4}x^{-1}_{2}x^{-1}_{3})^{2} + 16.9 \times 10^{6}]^{0.5} / [ 110.0x^{3}_{6} ] \leq 1 \\ & \ \ \ [(745x_{5}x^{-1}_{2}x^{-1}_{3})^{2} + 157.5 \times 10^{6}]^{0.5} / [ 85.0x^{3}_{7} ] \leq 1 \\ & \ \ \ x_{2}x_{3}/40 \leq 1 \\ & \ \ \ 5x_{2}/x_1 \leq 1 \\ & \ \ \ x_{1}/12x_2 \leq 1 \\ & \ \ \ (1.5x_6 + 1.9)x^{-1}_4 \leq 1 \\ & \ \ \ (1.1x_7 + 1.9)x^{-1}_5 \leq 1 \\ & \ \ \ 2.6 \leq x_1 \leq 3.6\\ & \ \ \ 0.7 \leq x_2 \leq 0.8\\ & \ \ \ 17 \leq x_3 \leq 28\\ & \ \ \ 7.3 \leq x_4 \leq 8.3\\ & \ \ \ 7.3 \leq x_5 \leq 8.3\\ & \ \ \ 2.9 \leq x_6 \leq 3.9\\ & \ \ \ 5.0 \leq x_7 \leq 5.5\\ \tag{$\mathcal{P}$} \end{align*} Subproblem :math:`\mathcal{p}_{1}`: .. math:: \begin{align*} \text{min}: & \ \ \ 0.7854x_{1_{1}}x^{2}_{2_{1}}(3.3333x^{2}_{3_{1}} + 14.9334x_{3_{1}} -43.0934) + \phi_{x_{1_{12}}} (x_{1_{1}}-x_{1_{2}}) + \phi_{x_{1_{13}}} (x_{1_{1}}-x_{1_{3}}) + \phi_{x_{2_{12}}} (x_{2_{1}}-x_{2_{2}}) + \phi_{x_{2_{13}}} (x_{2_{1}}-x_{2_{3}}) + \phi_{x_{3_{12}}} (x_{3_{1}}-x_{3_{2}}) + \phi_{x_{3_{13}}} (x_{3_{1}}-x_{3_{3}})\\ \text{w.r.t.}: & \ \ \ x_{1_{1}}, x_{2_{1}}, x_{3_{1}} \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ 27x^{-1}_{1_{1}}x^{-2}_{2_{1}}x^{-1}_{3_{1}} \leq 1 \\ & \ \ \ 397.5x^{-1}_{1_{1}}x^{-2}_{2_{1}}x^{-2}_{3_{1}} \leq 1 \\ & \ \ \ x_{2_{1}}x_{3_{1}}/40 \leq 1 \\ & \ \ \ 5x_{2_{1}}/x_{1_{1}} \leq 1 \\ & \ \ \ x_{1_{1}}/12x_{2_{1}} \leq 1 \\ \tag{$\mathcal{p}_{1}$} \end{align*} Subproblem :math:`\mathcal{p}_{2}`: .. math:: \begin{align*} \text{min}: & \ \ \ -1.5079x_{1_{2}}(x^{2}_{6} + x^{2}_{7}) +7.477(x^{3}_{6}+x^{3}_{7}) + \phi_{x_{1_{12}}} (x_{1_{1}}-x_{1_{2}}) + \phi_{x_{1_{13}}} (x_{1_{1}}-x_{1_{3}}) + \phi_{x_{2_{12}}} (x_{2_{1}}-x_{2_{2}}) + \phi_{x_{2_{13}}} (x_{2_{1}}-x_{2_{3}}) + \phi_{x_{3_{12}}} (x_{3_{1}}-x_{3_{2}}) + \phi_{x_{3_{13}}} (x_{3_{1}}-x_{3_{3}})\\ \text{w.r.t.}: & \ \ \ x_{1_{1}}, x_{2_{1}}, x_{3_{1}}, x_4, x_6 \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ 1.93x^{-1}_{2_{2}}x^{-1}_{3_{2}}x^{3}_{4_{2}}x^{-4}_{6} \leq 1 \\ & \ \ \ (1.5x_6 + 1.9)x^{-1}_{4_{2}} \leq 1 \\ & \ \ \ [(745x_{4}x^{-1}_{2_{2}}x^{-1}_{3_{2}})^{2} + 16.9 \times 10^{6}]^{0.5} / [ 110.0x^{3}_{6} ] \leq 1 \tag{$\mathcal{p}_{2}$} \end{align*} Subproblem :math:`\mathcal{p}_{3}`: .. math:: \begin{align*} \text{min}: & \ \ \ 0.7854(x_{4_{3}}x^{2}_{6}+x_{5}x^{2}_{7}) + \phi_{x_{1_{12}}} (x_{1_{1}}-x_{1_{2}}) + \phi_{x_{1_{13}}} (x_{1_{1}}-x_{1_{3}}) + \phi_{x_{2_{12}}} (x_{2_{1}}-x_{2_{2}}) + \phi_{x_{2_{13}}} (x_{2_{1}}-x_{2_{3}}) + \phi_{x_{3_{12}}} (x_{3_{1}}-x_{3_{2}}) + \phi_{x_{3_{13}}} (x_{3_{1}}-x_{3_{3}})\\ \text{w.r.t.}: & \ \ \ x_{1_{3}}, x_{2_{3}}, x_{3_{3}}, x_{5}, x_{7} \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ [(745x_{5}x^{-1}_{2_{3}}x^{-1}_{3_{3}})^{2} + 157.5 \times 10^{6}]^{0.5} / [ 85.0x^{3}_{7} ] \leq 1 \\ & \ \ \ (1.1x_7 + 1.9)x^{-1}_5 \leq 1 \\ & \ \ \ 1.93x^{-1}_{2_{3}}x^{-1}_{3_{3}}x^{3}_{5}x^{-4}_{7} \leq 1 \tag{$\mathcal{p}_{3}$} \end{align*} .. code-block:: python def SR_A1(x): """ Speed reducer A1 """ return (0.7854*x[0]*x[1]**2*(3.3333*x[2]*x[2] + 14.9335*x[2] - 43.0934)) def SR_A2(x): """ Speed reducer A2 """ return (-1.5079*x[0]*x[4]**2) + (7.477 * x[4]**3) def SR_A3(x): """ Speed reducer A3 """ return 0.7854 * x[3] * x[4]**2 def SR_opt1(x, y): g5 = 27/(x[0]*x[1]**2*x[2]) -1 g6 = 397.5/(x[0]*x[1]**2*x[2]**2) -1 g9 = x[1]*x[2]/40 -1 g10 = 5*x[1]/x[0] -1 g11 = x[0]/(12*x[1]) -1 return [y, [g5,g6,g9,g10,g11]] def SR_opt2(x, y): g1 = np.sqrt( ((745*x[3])/(x[1]*x[2]))**2 + 1.69e+7)/(110*x[4]**3) -1 g3 = (1.5*x[4] + 1.9)/x[3] -1 g7 = 1.93*x[3]**3/(x[1]*x[2]*x[4]**4) -1 return [y, [g1,g3,g7]] def SR_opt3(x, y): g2 = np.sqrt( ((745*x[3])/(x[1]*x[2]))**2 + 1.575e+8)/(85*x[4]**3) -1 g4 = (1.1*x[4] + 1.9)/x[3] -1 g8 = (1.93*x[3]**3)/(x[1]*x[2]*x[4]**4) -1 return [y, [g2, g4, g8]] # Variables setup f1min = 722 f1max = 5408 f2min = 184 f2max = 506 f3min = 942 f3max = 1369 # v = {} V: List[variableData] = [] s = COUPLING_TYPE.SHARED ff = COUPLING_TYPE.FEEDFORWARD fb = COUPLING_TYPE.FEEDBACK un = COUPLING_TYPE.UNCOUPLED dum = COUPLING_TYPE.DUMMY names = ["x1", "x2", "x3", "f1", "x1", "x2", "x3", "x4", "x6", "f2", "x1", "x2", "x3", "x5", "x7", "f3"] spi = [ 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3] links = [[2,3],[2,3],[2,3], None, [1,3],[1,3],[1,3], None, None, None, [1,2],[1,2],[1,2], None, None, None] lb = [2.6 , 0.7 , 17., 722., 2.6 , 0.7, 17., 7.3, 2.9, 184., 2.6 , 0.7, 17., 7.3, 5.,942.] ub = [3.6 , 0.8 , 28.,5408., 3.6 , 0.8, 28., 8.3, 3.9, 506., 3.6 , 0.8 , 28., 8.3, 5.5,1369.] bl = np.divide(np.subtract(ub, lb), 2.) coupling_t = \ [ s, s, s, un, s, s, s, un, un, un, s, s, s, un, un, un] scaling = [10.] * 16 # Variables dictionary with subproblems link for i in range(16): v[f"var{i+1}"] = {"index": i+1, "sp_index": spi[i], f"name": names[i], "dim": 1, "value": 0., "coupling_type": coupling_t[i], "link": links[i], "baseline": bl[i], "scaling": scaling[i], "lb": lb[i], "value": bl[i], "ub": ub[i]} for i in range(16): V.append(variableData(**v[f"var{i+1}"])) # Analyses setup; construct disciplinary analyses DA1: process = DA(inputs=[V[0], V[1], V[2]], outputs=[V[3]], blackbox=SR_A1, links=[4], coupling_type=COUPLING_TYPE.FEEDFORWARD) DA2: process = DA(inputs=[V[4], V[5], V[6], V[7], V[8]], outputs=[V[9]], blackbox=SR_A2, links=[4], coupling_type=COUPLING_TYPE.FEEDFORWARD ) DA3: process = DA(inputs=[V[10], V[11], V[12], V[13], V[14]], outputs=[V[15]], blackbox=SR_A3, links=[4], coupling_type=COUPLING_TYPE.FEEDFORWARD ) # MDA setup; construct subproblems MDA sp1_MDA: process = MDA(nAnalyses=1, analyses = [DA1], variables=[V[0], V[1], V[2]], responses=[V[3]]) sp2_MDA: process = MDA(nAnalyses=1, analyses = [DA2], variables=[V[4], V[5], V[6], V[7], V[8]], responses=[V[9]]) sp3_MDA: process = MDA(nAnalyses=1, analyses = [DA3], variables=[V[10], V[11], V[12], V[13], V[14]], responses=[V[15]]) # Construct the coordinator coord = ADMM(beta = 1.3, nsp=4, budget = 50, index_of_master_SP=1, display = True, scaling = 0.1, mode = "serial", M_update_scheme= w_scheme.MEDIAN ) # Construct subproblems sp1 = SubProblem(nv = 3, index = 1, vars = [V[0], V[1], V[2]], resps = [V[3]], is_main=1, analysis= sp1_MDA, coordination=coord, opt=SR_opt1, fmin_nop=np.inf, budget=20, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST) sp2 = SubProblem(nv = 5, index = 2, vars = [V[4], V[5], V[6], V[7], V[8]], resps = [V[9]], is_main=0, analysis= sp2_MDA, coordination=coord, opt=SR_opt2, fmin_nop=np.inf, budget=20, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST ) sp3 = SubProblem(nv = 5, index = 3, vars = [V[10], V[11], V[12], V[13], V[14]], resps = [V[15]], is_main=0, analysis= sp3_MDA, coordination=coord, opt=SR_opt3, fmin_nop=np.inf, budget=20, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST) # Construct MDO workflow MDAO: MDO = MDO( Architecture = MDO_ARCHITECTURE.IDF, Coordinator = coord, subProblems = [sp1, sp2, sp3], variables = V, responses = [V[3], V[9], V[15]], fmin = np.inf, hmin = np.inf, display = False, inc_stop = 1E-9, stop = "Iteration budget exhausted", tab_inc = [], noprogress_stop = 100 ) # Run the MDO problem out = MDAO.run() print(f'------Run_Summary------') print(MDAO.stop) print(f'q = {MDAO.Coordinator.q}') for i in MDAO.Coordinator.master_vars: print(f'{i.name}_{i.sp_index} = {i.value}') fmin = 0 hmax = -np.inf for j in range(len(MDAO.subProblems)): print(f'SP_{MDAO.subProblems[j].index}: fmin= {MDAO.subProblems[j].MDA_process.getOutputs()}, hmin= {MDAO.subProblems[j].opt([s.value for s in MDAO.subProblems[j].get_design_vars()] , [])[1]}') fmin += sum(MDAO.subProblems[j].MDA_process.getOutputs()) hmin= MDAO.subProblems[j].opt([s.value for s in MDAO.subProblems[j].get_design_vars()] , [])[1] if max(hmin) > hmax: hmax = max(hmin) print(f'P_main: fmin= {fmin}, hmax= {hmax}') print(f'Final obj value of the main problem: \n {fmin}') .. code-block:: Stop: qmax = 5.822068604999231e-10 < 1e-09 ------Run_Summary------ Max inconsitency is below stopping threshold q = [-7.82041099e-14 -5.82206860e-10 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00] x1_1 = 3.4999998893203155 x2_1 = 0.7 x3_1 = 17.0 f1_1 = 1581.466590697449 x1_2 = 3.4999998893210975 x2_2 = 0.7 x3_2 = 17.0 x4_2 = 7.3 x6_2 = 3.3502146307821015 f2_2 = 221.91863685660422 x1_3 = 3.499999895142384 x2_3 = 0.7 x3_3 = 17.0 x5_3 = 7.715319699048533 x7_3 = 5.286654424469452 f3_3 = 169.3583713823956 Geometric programming ===================== Original problem :math:`\mathcal{P}`: .. math:: \begin{align*} \text{min}: & \ \ \ z^{2}_1 + z^{2}_2 \\ \text{w.r.t.}: & \ \ \ z_{1}, z_{2}, z_{3}, z_4, z_5, z_6, z_7, z_8, z_9, z_{10}, z_{11}, z_{12}, z_{13}, z_{14} \\ \text{s.t. }: \ \ \ & z_{i} \in [10^{-6}, 10^6 ] \ \ \forall i \\ & \ \ \ z^{2}_1 = z^{2}_{3} + z^{-2}_{4} + z^{2}_{5} \\ & \ \ \ z^{2}_2 = z^{2}_{5} + z^{2}_{6} + z^{2}_{7} \\ & \ \ \ z^{2}_3 = z^{2}_{8} + z^{-2}_{9} + z^{-2}_{10} + z^{2}_{11}\\ & \ \ \ z^{2}_6 = z^{2}_{11} + z^{2}_{12} + z^{2}_{13} + z^{2}_{14} \\ & \ \ \ z^{-2}_3 + z^{2}_{4} - z^{2}_{5} \leq 0 \\ & \ \ \ z^{2}_5 + z^{-2}_{6} - z^{2}_{7} \leq 0 \\ & \ \ \ z^{2}_8 + z^{2}_{9} - z^{2}_{11} \leq 0 \\ & \ \ \ z^{-2}_8 + z^{2}_{10} - z^{2}_{11} \leq 0 \\ & \ \ \ z^{2}_{11} + z^{-2}_{12} - z^{2}_{13} \leq 0 \\ & \ \ \ z^{2}_{11} + z^{2}_{12} - z^{2}_{14} \leq 0 \tag{$\mathcal{P}$} \end{align*} .. _Ft4: .. figure:: Figures/GP.png :width: 400 :align: center Subproblem :math:`\mathcal{p}_{1}`: .. math:: \begin{align*} \text{min}: & \ \ \ t^{2}_{y_{21}} + t^{2}_{y_{31}} + z^{-2}_4 + 2z^{2}_{5}+ z^{2}_{7} + \phi_{y_{21}} (t_{y_{21}}-r_{y_{21}}) + \phi_{y_{31}} (t_{y_{31}}-r_{y_{31}})\\ \text{w.r.t.}: & \ \ \ t_{y_{21}}, t_{y_{31}}, z_{4}, z_{5}, z_{7} \in [10^{-6}; 10^{6}] \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ t^{-2}_{y_{21}}+z^{2}_{4}-z^{2}_{5} \leq 0 \\ & \ \ \ z^{2}_{5} + t^{-2}_{y_{31}} - z^{2}_{7} \leq 0 \tag{$\mathcal{p}_{1}$} \end{align*} Subproblem :math:`\mathcal{p}_{2}`: .. math:: \begin{align*} \text{min}: & \ \ \ \phi_{y_{21}} (t_{y_{21}}-r_{y_{21}}) + \phi_{s_{23}} (t_{s_{23}}-r_{s_{23}})\\ \text{w.r.t.}: & \ \ \ z_8, z_9, z_{10}, t_{s_{23}} \in [10^{-6}; 10^{6}] \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ z^{2}_8 + z^{2}_{9} - t^{2}_{s_{23}} \leq 0 \\ & \ \ \ z^{-2}_8 + z^{2}_{10} - t^{2}_{s_{23}} \leq 0 \\ \text{where} & \ \ \ r_{y_{21}} = \sqrt{z^{2}_{8}+z^{-2}_{9}+z^{-2}_{10}+t^{2}_{s_{23}}} \tag{$\mathcal{p}_{2}$} \end{align*} Subproblem :math:`\mathcal{p}_{3}`: .. math:: \begin{align*} \text{min}: & \ \ \ \phi_{y_{31}} (t_{y_{31}}-r_{y_{31}}) + \phi_{s_{23}} (t_{s_{23}}-r_{s_{23}})\\ \text{w.r.t.}: & \ \ \ z_{12}, z_{13}, z_{14}, r_{s_{23}} \in [10^{-6}; 10^{6}] \\ \text{s.t. }: & \ \ \ & \\ & \ \ \ r^{2}_{s_{23}} + z^{-2}_{12} - z^{2}_{13} \leq 0 \\ & \ \ \ r^{2}_{s_{23}} + z^{2}_{12} - z^{2}_{14} \leq 0 \\ \text{where} & \ \ \ r_{y_{31}} = \sqrt{r^{2}_{s_{23}} + z^{2}_{12} +z^{2}_{13} + z^{2}_{14}} \tag{$\mathcal{p}_{3}$} \end{align*} .. code-block:: python def GP_A1(z): z1 = np.sqrt(z[0]**2 + z[1]**-2 + z[2]**2) z2 = np.sqrt(z[2]**2 + z[3]**2 + z[4]**2) return z1**2 + z2**2 def GP_opt1(z,y): if isinstance(y, list) and len(y) > 0: return [y[0], [z[0]**-2 + z[1]**2 - z[2]**2, z[2]**2 + z[3]**-2 - z[4]**2]] else: return [y, [z[0]**-2 + z[1]**2 - z[2]**2, z[2]**2 + z[3]**-2 - z[4]**2]] def GP_A2(z): z3 = np.sqrt(z[0]**2 + z[1]**-2 + z[2]**-2 + z[3]**2) return z3 def GP_opt2(z,y): return [0, [z[0]**2 + z[1]**2 - z[3]**2, z[0]**-2 + z[2]**2 - z[3]**2]] def GP_A3(z): z6 = np.sqrt(z[0]**2 + z[1]**2 + z[2]**2 +z[3] **2) return z6 def GP_opt3(z, y): return [0, [z[0]**2 + z[1]**-2 - z[2]**2, z[0]**2 +z[1]**2 - z[3]**2]] v = {} V: List[variableData] = [] s = COUPLING_TYPE.SHARED ff = COUPLING_TYPE.FEEDFORWARD fb = COUPLING_TYPE.FEEDBACK un = COUPLING_TYPE.UNCOUPLED dum = COUPLING_TYPE.DUMMY names = ["z3", "z4", "z5", "z6", "z7", "z3", "z8", "z9", "z10", "z11", "z6", "z11", "z12", "z13", "z14", "dd"] spi = [ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1] links = [ 2, None, None, 3, None, 1, None, None, None, 3, 1, 2, None, None, None, None] coupling_t = \ [ fb, un, un, fb, un, ff, un, un, un, s, ff, s, un, un, un, ff] lb = [1e-6]*15 ub = [1e6]*15 bl = [1.]*15 scaling = [9.e5] * 15 lb.append(15) ub.append(18) bl.append(GP_A1([1]*5)) scaling.append(1) # Variables dictionary with subproblems link for i in range(16): v[f"var{i+1}"] = {"index": i+1, "sp_index": spi[i], f"name": names[i], "dim": 1, "coupling_type": coupling_t[i], "link": links[i], "baseline": bl[i], "scaling": scaling[i], "lb": lb[i], "value": bl[i], "ub": ub[i]} for i in range(16): V.append(variableData(**v[f"var{i+1}"])) # Analyses setup; construct disciplinary analyses DA1: process = DA(inputs=[V[0], V[1], V[2], V[3], V[4]], outputs=[V[15]], blackbox=GP_A1, links=[2, 3], coupling_type=COUPLING_TYPE.FEEDBACK) DA2: process = DA(inputs=[V[6], V[7], V[8], V[9]], outputs=[V[5]], blackbox=GP_A2, links=[1, 3], coupling_type=COUPLING_TYPE.FEEDFORWARD ) DA3: process = DA(inputs=[V[11], V[12], V[13], V[14]], outputs=[V[10]], blackbox=GP_A3, links=[1, 2], coupling_type=COUPLING_TYPE.FEEDFORWARD ) # MDA setup; construct subproblems MDA sp1_MDA: process = MDA(nAnalyses=1, analyses = [DA1], variables=[V[0], V[1], V[2], V[3], V[4]], responses=[V[15]]) sp2_MDA: process = MDA(nAnalyses=1, analyses = [DA2], variables=[V[6], V[7], V[8], V[9]], responses=[V[5]]) sp3_MDA: process = MDA(nAnalyses=1, analyses = [DA3], variables=[V[11], V[12], V[13], V[14]], responses=[V[10]]) # Construct the coordinator coord = ADMM(beta = 1.3, nsp=3, budget = 200, index_of_master_SP=1, display = True, scaling = 1., mode = "serial", M_update_scheme= w_scheme.MEDIAN ) # Construct subproblems sp1 = SubProblem(nv = 5, index = 1, vars = [V[0], V[1], V[2], V[3], V[4]], resps = [V[15]], is_main=1, analysis= sp1_MDA, coordination=coord, opt=GP_opt1, fmin_nop=np.inf, budget=5, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST, freal=15.) sp2 = SubProblem(nv = 4, index = 2, vars = [V[6], V[7], V[8], V[9]], resps = [V[5]], is_main=0, analysis= sp2_MDA, coordination=coord, opt=GP_opt2, fmin_nop=np.inf, budget=20, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST ) sp3 = SubProblem(nv = 4, index = 3, vars = [V[11], V[12], V[13], V[14]], resps = [V[10]], is_main=0, analysis= sp3_MDA, coordination=coord, opt=GP_opt3, fmin_nop=np.inf, budget=20, display=False, psize = 1., pupdate=PSIZE_UPDATE.LAST) # Construct MDO workflow MDAO: MDO = MDO( Architecture = MDO_ARCHITECTURE.IDF, Coordinator = coord, subProblems = [sp1, sp2, sp3], variables = V, responses = [V[5], V[10], V[15]], fmin = np.inf, hmin = np.inf, display = False, inc_stop = 1E-9, stop = "Iteration budget exhausted", tab_inc = [], noprogress_stop = 100 ) # Run the MDO problem out = MDAO.run() print(f'------Run_Summary------') print(MDAO.stop) print(f'q = {MDAO.Coordinator.q}') xsp2 = [] xsp3 = [] index = np.argmax(MDAO.Coordinator.q) for i in MDAO.Coordinator.master_vars: if i.sp_index == MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].link: xsp2.append(i.value) if i.sp_index == MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].link: xsp3.append(i.value) print(f'{i.name}_{i.sp_index} = {i.value}') fmin = 0 hmax = -np.inf for j in range(len(MDAO.subProblems)): print(f'SP_{MDAO.subProblems[j].index}: fmin= {MDAO.subProblems[j].MDA_process.getOutputs()}, hmin= {MDAO.subProblems[j].opt([s.value for s in MDAO.subProblems[j].get_design_vars()] , [])[1]}') if MDAO.subProblems[j].is_main: fmin = MDAO.subProblems[j].MDA_process.getOutputs() hmin= MDAO.subProblems[j].opt([s.value for s in MDAO.subProblems[j].get_design_vars()] , [])[1] if max(hmin) > hmax: hmax = max(hmin) print(f'P_main: fmin= {fmin}, hmax= {hmax}') print(f'Final obj value of the main problem: \n {fmin}') # Checking the impact of swapping z11_2 and z11_3 on the feasibility of SP2 and SP3, respectively temp = copy.deepcopy(xsp3[1]) xsp3[1] = xsp2[-1] xsp2[-1] = temp print(f'For {MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].name}_' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].link} to ' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].name}_' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].link}, using {MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].name}_' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].link}' f' will make h_sp{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].link} = {GP_opt2(xsp2, 0)[1]}') print(f'For {MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].name}_' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].link} to ' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].name}_' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].link}, using {MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].name}_' f'{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[1,index]-1].link}' f' will make h_sp{MDAO.Coordinator.master_vars[MDAO.Coordinator._linker[0,index]-1].link} = {GP_opt3(xsp3, 0)[1]}') .. code-block:: ------Run_Summary------ Iteration budget exhausted q = [3.23003112e-07 1.43060452e-05 8.90277829e-01] z3_1 = 2.398289998370998 z4_1 = 0.7582329644099639 z5_1 = 1.11111211111 z6_1 = 1.8764552402611754 z7_1 = 1.2323147798018002 z3_2 = 2.3982896753678857 z8_2 = 1.0481650186930753 z9_2 = 0.7709432938460119 z10_2 = 0.8846995034714752 z11_2 = 1.3011546553413305 z6_3 = 1.8764409342160242 z11_3 = 0.4108768262121927 z12_3 = 1.0071582788266598 z13_3 = 1.0745489499032588 z14_3 = 1.08774425713769 dd_1 = 14.99999996837727 SP_1: fmin= [14.99999996837727], hmin= [-0.4857941233010683, -2.6165797838650917e-05] SP_2: fmin= [2.3982896753678857], hmin= [3.1621576690454845e-08, -0.00010216561395548496] SP_3: fmin= [1.8764409342160242], hmin= [3.162211648088942e-08, -4.008740894789753e-09] P_main: fmin= [14.99999996837727], hmax= -2.6165797838650917e-05 Final obj value of the main problem: [14.99999996837727] For z11_3 to z11_2, using z11_3 will make h_sp2 = [6.067750061945379, -0.014480830449391968] For z11_3 to z11_2, using z11_2 will make h_sp3 = [3.097329036049318, 4.059378570979726]